Constructing a low cost and low powered cluster with
Parallella boards

Michael Kruger
Computer Science department
Hamilton Building
Prince Alfred Street
Grahamstown, South Africa
g12k5549@campus.ru.ac.za

ABSTRACT

Currently, high performance computing is largely restricted
to well-funded research groups. This project aimed to cre-
ate a high performance cluster using the cheap and energy-
efficient 18-core Parallella boards. Four boards were con-
nected over a network as a cluster and basic test programs
were run using MPI. Experimental results show that the

Epiphany chip performs very well compared with other energy-

efficient chips such as the Cortex A9 ARM with a 11x
speedup. Similar performance is achieved by the cluster of
four Parallella boards against an Intel i5 3570 running a sin-
gle thread. The Epiphany however, sees a drop in speed
when attempting complex arithmetic operations compared
with the other processors owing to the lack of hardware sup-
port. It is possible to achieve high performance using low-
powered Parallella boards as long as the user is aware of the
Epiphany chip’s weaknesses and avoids these.

CCS Concepts

eComputer systems organization — Multicore ar-
chitectures; Heterogeneous (hybrid) systems; Inter-
connection architectures; eNetworks — Network on chip;
eHardware — Impact on the environment;

1. INTRODUCTION

As processor clock speeds get faster they reach a soft cap,
from either excessive power consumption or heat output,
which makes it infeasible to increase the speed any higher.
To get around this problem chips have started to incorpo-
rate multiple processors that run slower yet achieve the same
or better performance. Using multiple individual comput-
ers over a network, which is known as cluster computing,
it is possible for them to work together as one system to
solve problems [6]. This has made access to a “supercom-
puter” simpler for the ordinary user. Obviously, there is still
the need for specialised super-computers, but this is largely
restricted to well-funded research groups.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

© 2015 ACM. ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

Cluster computing has become more and more popular as
it is a low-cost way of creating high performance comput-
ers. Using ordinary personal computers (PCs) is one way
of setting up a cluster, but the advent of even lower cost
“computing” devices, has provided more opportunities than
ever before of creating such clusters.

The Parallella is one such device that provides 18 cores
per board at a comparatively low cost [2].

In this research, we investigate whether it is possible to
build a high performance computer using a cluster of Par-
allella boards, thereby providing a very low-cost alternative
to an ordinary PC.

2. RELATED WORK

The Iridis-pi[8] is a cluster constructed from 64 Raspberry
Pi model B nodes and held together with Lego. The Iridis-
Pi was created by a team at the University of Southampton.
Each Raspberry Pi has a 700 MHz ARM processor, 256 MB
of RAM, a 16GB SD card, and a 100Mb/s network interface.
The benefits of the cluster are its cheap price, compact size,
and low power consumption. Using the HPL benchmark
and all 64 nodes the Iridis-pi achieves a throughput of 1.14
gigaFLOPS[8]. The price of a Raspberry Pi model B at time
of writing is 450 South African Rand' bringing the cost of
the 64 Iridis-pi nodes to 28800 South African Rand. This
price excludes the cost of the switch, Lego and cableing.

3. HIGH PERFORMANCE COMPUTING

HPC is the term for very fast systems aimed at process-
ing large volumes of information quickly. High performance
computers are made up of multiple processors as the speed of
a single processor has reached its limits due to physics [11].
HPC is most cost effectively obtained using cluster com-
puting, as most places needing large amounts of processing
power have multiple computers readily available [6]. HPC is
used to run high cost simulations that would be too expen-
sive or difficult to do physically; these require large amounts
of computational power to be completed in a timely man-
ner [21; 20], and therefore, more powerful machines are con-
tinuously being built. HPC has evolved over time with the
number of cores in a single computer approaching the mil-
lions and performance reaching multiple petaFLOPS (10'°
floating-point operations per second) [3].

Owing to current size and speed constraints on single core

"http://pifactory.dedicated.co.za/product/
raspberry-pi- 1-model-b/



processors, it has been found that running multiple slower
cores is both more efficient and faster. Algorithms need
to take into account ways in which to split the workload
evenly between multiple processors if they want to obtain
faster execution speeds using this type of architecture [11].
Many compilers have special flags so that they can optimise
programs for parallel computation [17]; this, however, only
achieves a minor boost in speed when compared with an effi-
cient algorithm that splits the work into multiple pieces that
can be distributed among multiple processors. According to
David Geer [11], to take advantage of multiple cores, pro-
grams need to be rewritten so that they can run on multiple
threads, with each thread assigned to a separate processor.
Some common HPC concepts are detailed below.

Throughput The rate at which data can be successfully
transferred over a channel.

Shared Memory Memory, over which multiple processes
have control and which is shared between them.

Distributed memory This is the term used in a multi-
core system when a processor has its own private mem-
ory that it can access and use; however, when it needs
information from another process, it has to communi-
cate with the other process and request the particular
data.

Bottleneck A bottleneck occurs when the effectiveness of
a system is restricted by a single or small number of
resources.

Latency This refers to the amount of time required for an
instruction to travel from its source to its location and
be acted upon. A large amount of latency is detrimen-
tal as the time to pass information around a system
will become a bottleneck and the system will not be
able to make use of all its computational power.

FLOPS Floating Point Operations Per Second is the usual
measurement of a high performance computer. It refers
to the number of instructions using floats that a sys-
tem can compute per second. It is usually referred to
using a prefix such as giga for 10° or peta for 10*°.

4. CLUSTERS HARDWARE AND SOFTWARE

With the demand for large amounts of processing power,
various ways of creating supercomputers cheaply have ap-
peared. Clusters of computers connected on a network can
be purposed to work together as a supercomputer. With
the increased speed and decreased latency of the Internet, it
is possible to create a cluster using computers from all over
the world; this has led to programs and applications that al-
low a computer to connect to a pool of other computers and
add its processing power to the computation. There are,
however, some factors limiting the effectiveness of cluster
computing. These include building a switch to keep up with
the speed of a single core processor and creating compilers
that make good use of multiple processors.

4.1 Architectures

There are two generally used methods for controlling com-
munication within a cluster:

MPI The individual nodes of the cluster can communi-
cate with each other using a message passing inter-
face (MPI), which provides a thread safe application
programming interface (API) that allows the work to
be effectively delegated to multiple nodes on the net-
work [19; 14] and information passed between each
node so that it can be worked on. More information
on MPI is provided in Section 4.2 with the overview of
MPICH.

Parallel Virtual Machine uses a parallel virtual machine
(PVM) approach, which combines all the nodes and
allows them to appear as a single PVM. This PVM
handles all the message passing, task scheduling, and
data conversions. To set this up, each node of the
cluster needs the same PVM image installed and must
be marked as a PVM node. Parallel virtual machines
are popular due to the ease with which the cluster
can be managed[12]. Some of the available PVMs are
reviewed in Section 4.2.

4.2 Software

Some of the software useful for being deployed on clusters
is reviewed below:

MPICH MPICH is a high performance, portable and widely
used implementation of the Message Passing Interface
(MPI) standard. MPICH was created for distributed
memory systems, with the idea of portability and high

performance in mind. Excellent results have been achieved

with MPICH, which is the most used implementation
of MPI in the world, and its derivatives. MPICH
is able to work in many different environments and
take advantage of what is available to increase perfor-
mance while maintaining portability, for example, us-
ing shared memory to pass messages between proces-
sors faster. MPICH is distributed as source code and
has an open-source freely available licence [5; 14; 13].

Open-MPI Open-MPI is an open-source implementation
of the Message Passing Interface [1]. It has multi-
ple partners from across the HPC community, main-
taining its libraries[10]. These partners include ARM,
which provided the Zyng-chip for use on the Parallella
board [1]. Open-MPI conforms fully to MPI-3.1 stan-
dards, supports multiple operating systems[10], and is
provided by default on the Parallella board Ubuntu
distribution.

OpenMP OpenMP is “an industry standard API for shared-
memory programming” [9]. A shared-memory paral-
lel system describes a multi-processor system where
individual processors share one memory location [7].
Each processor can still have its own personal cache
memory to work with as the speed difference between
main memory and processor memory would cripple the
speed if the processor needed to pick up everything
from the shared memory space. OpenMP was intro-
duced to fix the inability of compilers to make good
decisions on how to split up a program to take ad-
vantage of multiple processors; although this is pos-
sible for simpler programs, a user would need to cast
a more discerning eye for more complex problems [7].
OpenMP provides an alternative to message passing



in parallel programming. OpenMP is a set of routines
and compiler directives to manage shared-memory par-
allelism. The OpenMP standard is made up of four
parts, namely, control structure, data environment,
synchronisation, and runtime library [9], which can
be added to a sequential program written in C, C++
or Fortran [7].

5. PARALLELLA CLUSTER

5.1 Parallella Specifications

The Parallella board is an “affordable, energy efficient,
high performance, credit card sized computer”[2] that aims
to provide a platform for developing and implementing high
performance parallel processing. The 66-core version (64-
Epiphany cores and two ARM cores) of the Parallella board
achieves over 90 gigaFLOPS (10° floating point operations
per second), while the 18-core (16-Epiphany and 2 ARM
cores) version can reach 32 gigaFLOPS using only about 5
Watts. The Parallella has a 1-Gbps Ethernet port allowing
a large amount of information to be passed quickly over the
network. This increases its ability to work in a cluster as it
can pass information to its peers rapidly, provided that the
switch is capable of handling the 1Gbps bandwidth.

The aim of creating the Parallella board was to make par-
allel computing more accessible by creating an affordable,
open-source, and open-access platform.

The price of a Parallella board starts at $99 (at the time of
writing) for the 16-core board and uses a customised ARM
implementation of Linux (Ubuntu 14.04). The Parallella is
three years old and software that takes advantage of this is
still being developed?[18].

Programming for the Epiphany chip (the Parallella boards

co-processor) is done in C and the Parallella team have pro-
vided some basic primitives with the SDK (Software Devel-
opment Kit). Memory addressing, barriers, and communica-
tion between eCores are a few examples of what is provided
by the SDK.
To run programs on the Epiphany chip, a workgroup of cores
needs to be set up. This can be done using the provided SDK
to give a starting node and the number of columns and rows
in the matrix of cores [4; 16; 22; 19].

5.2 Physical Layout of Cluster

Figure 1 shows an overview of how each entity is connected
to the cluster. For further information see [15].

The four parallella boards are connected to a gigabit switch
with each having the hostname “parallella” followed by a
unique number, for example, “parallellal”. Parallellal was
chosen to launch programs to the cluster and can be referred
to as the head node. The parallella boards are stacked on top
of each other using spacers to separate them and two fans on
either side. The fans are arranged to force air through the
stack, with one pushing and the other pulling air through
to cool them. This setup increases airflow allowing for heat
to be carried away faster. The stack of parallella boards are
placed on a non conductive surface and power is transfered
through the spacers connecting each board. Access to the
head node is done via ssh from a non Parallella host which
will be referred to as the Controller, which is also connected

*https://www.kickstarter.com/projects/adapteva/
parallella-a-supercomputer-for-everyone

to the gigabit switch. Giving commands to the cluster is
typically done by connecting to the head node of the paral-
lella stack via the Controller. Connected to the switch other
than the cluster and external machine are a NFS server and
a DHCP server. These two entities do not need to be on
separate machines but in this case they are, They may also
be setup to be on the Controller but when connecting a new
computer to control and interact with the cluster it will have
to be setup to fulfil the NFS and DHCP roles making the
cluster less portable from machine to machine.

5.3 Software

In this section, we give a break down of the software and
required configuration needed to allow programs to be exe-
cuted using MPI on the Parallella cluster.

5.3.1 Linux

The Parallella boards were supplied with a raw disk image
of Ubuntu 14.04, downloaded from the Parallella website®.
There are three different versions of the Parallella board for
which Ubuntu images are provided: the z7010 image applies
to the P1600 and P1501, while the z7020 image is for the
P1602 [18]. The 27010 is specific to Parallella boards with
the Xilinx Zynq Dual-core ARM A9 XC7Z010 host proces-
sor, which matches those used in the cluster. The other
image is for the Xilinx Zynq Dual-core ARM A9 XC7Z020,
which is used on the embedded version of the board.

There are also two different images per host processor: the
first is a headless one, which is what we have used as it is the
most stripped down of the images, while the other includes a
desktop environment and HDMI drivers. The latter version
is useful for displaying generated graphics and writing code
in a GUI environment. The latest version of Ubuntu 14.04
headless for the 27010 was downloaded® and extracted.

Each Parallella board has a microSD card that acts as
its main hard drive and into which the board is booted.
All software that will ultimately be executed on a Parallella
board must be copied to the microSD card. The capacity of
the cards used in the cluster is 16 GB and the speed class is
UHS mark 1 which makes the Minimum Serial Data Writing
Speed 10 MB/SE’. Using a Windows 7 machine, Win32 Disk
Imager® and an SD to USB adaptor, the downloaded image
was copied to each of the microSD cards.

5.3.2 SSH

SSH or Secure Shell is a network protocol that allows one
computer to securely access another over a network. In the
case of the Parallella stack the Open-SSH implementation
will be used to facilitate the passing of messages between
nodes by OpenMPI. Secure shell by standard uses port 22
and TCP to create connections between nodes so it is vital
that this port is available and open.

For convenience, passwordless SSH was set up between
the nodes so that OpenMPI is able to run programs on the
nodes without needing a password to be provided for each
run. To do this RSA public/private key pairs are used to

3ftp://ftp.parallella.org/ubuntu/dists/trusty /image/

4At the time of writing, the appropriate file was Ubuntu-
14.04-headless-z7010-20150130.1.img.gz
Shttps://www.sdcard.org/developers/overview /speed_
class/

SDownloaded from

http://sourceforge.net/projects/
win32diskimager/



Broad Layout

Modified 4-pin Molex

+oV

Power|Supply

1L ©

Non copductive Jurface

Cluster

catbe cable

NFS Server

1Gb Ethernet Non Parallella
switch Host

DHCP Server

Figure 1: Basic overview of the cluster

authenticate the master with the slave nodes.

5.3.3 Open-MPI

OpenMPI was preinstalled and the environment correctly
set up on the Ubuntu image provided. To set up OpenMPI,
a user account was created on each parallella with the same
directories and file locations for consistency when running
anything through mpiexe or mpirun. To synchronise the
files so that each instance of a program on each node had
access to its local directory, NFS was used, the configuration
of which is described in Section 5.3.4.

If SSH has been configured correctly, the password of each
node being used does not need to be entered when running
an MPI program.

5.3.4 Network File Share

For OpenMPI to work correctly, the file structure and lo-
cations of used files must be the same on each node. For
this to happen, one of the nodes or a different machine was
chosen to host all the program files and have all the nodes
connect to that shared drive so that each node has the ex-
act same version of the files as every other node. For our
cluster, a different machine was used as problems occurred
when running nfs-kernel-server on the master node, which
was originally set as one of the Parallella boards; for de-
tails, refer to Section ??. To remedy this, a Raspberry Pi
was set up with an installation of nfs-kernel-server and its
dependences through a repository. The upside of using a
Raspberry Pi is it means that the cluster continues to use
very little power, the downside is that the Ethernet adaptor
used by the Raspberry Pi is only 100Mb/s and will not take
advantage of the 1Gb/s Ethernet that is used by everything

else that is part of the cluster. So the shared storage is ac-
cessed slower and if the cluster tries to access and copy large
amounts of data there will be a large performance drop. To
counter this when using large files and data they should be
copied to each Parallella board’s local hard drive for faster
access.

6. BENCHMARKING THE CLUSTER

As the Parallella stack is a heterogeneous cluster, to be
able to utilise fully the computational power of each board,
MPI is used in conjunction with the Epiphany libraries.

Creating a program for both MPI and the Epiphany co-
processor requires splitting of the work on two occasions:
once at the MPI level and again for distribution to the co-
processor. Figure 2 illustrates the process of running a pro-
gram that uses MPI to spilt work between the four Paral-
lella boards in the cluster, which then load the required srec
files onto their respective co-processors. Figure 2 displays
the way that MPI is run over SSH using parallellal as the
master node; this may slow down parallellal owing to the
overhead of setting up the MPI program on each Parallella
board. If the cluster has a large number of nodes, the delay
to parallellal may be large, causing an unbalanced workload
and extended execution time.

Using MPI two benchmarks were executed. The first
benchmark determines the Parallella stack’s ability to do
a large number of floating point multiplications while the
second tests the cluster’s communication speed.

6.1 Floating Point Multiplication

This benchmark, which is embarrassingly parallel, tries to



Running Programs on Epiphany Chips.

Current Layout

Non
Parallella
host

ssk—>| Parallella1

MPIEXEC using SSH

Parallella boards 16-core Epiphany co-processor

e load srec file—*|

—> Parallella2

e_load srec file—>

—> Parallella3

e_load srec file—>

—> Parallella4

e_load srec file—»

Figure 2: Starting a program using MPI for execution on Epiphany cores

emulate ideal conditions for the Parallella stack by creating
and splitting up work for each core to do. This work requires
no synchronisation with any other processes. This bench-
mark merely multiplies two floating point numbers for the
desired number of iterations. However, the two floats are
modified on every iteration to prevent the processor from
possibly using a cached answer. This benchmark has a se-
quential version, which was executed on the i5 CPU and on
a single ARM processor, a Parallella version for running on
a single Parallella, and a modified version of the Parallella
implementation with added MPI compatibility for execution
on the cluster.

Table 1 shows that the time difference between one Par-
allella board and four Parallella boards is closer to a 2.5x
speedup instead of the expected 4 increase. Before adding
the MPI_Barriers and having each process started by MPI
being completely separate after launch, the speedup was be-
tween 3.9%x and 4.1x. This situation we felt was unrealistic
as even the most parallel application would need to amalga-
mate its results at the end of the computation. This adds a
constant time to the total computation, which, if the compu-
tation time were sufficiently large, would not effect the time
in a significant way as it is not reliant apon the amount of
iterations.

The difference in the timings of the Intel i5 3570 and the
Parallella are very close and while the i5 is faster, it is worth
noting that at 100% load, the Parallella stack consumes ap-
proximately 20 Watts of power, which is three times less
than that used by the i5 when idle”.

6.2 Ethernet Bandwidth

This benchmark was created by Blaise Barney® to measure
point-to-point communications between MPI processors.
The benchmark pairs processes together and sends incre-

"http://www.tomshardware.com /reviews/
core-i5-3570-low-power,3204-13.html

8available from https://computing.llnl.gov/tutorials/mpi/
samples/C/mpi_bandwidth.c

mentally larger and larger messages between them and notes
the speeds. As seen in Table 2, the bandwidth appears to
get faster the larger the messages get, excluding some out-
liers. The larger message size increases the time in which
a message is in transmission while the time to set up the
connection between nodes stays the same as the number of
messages sent is constant. The larger message size causes
the MPI overhead per byte of data to be less.

7. LIMITATIONS

This section will cover the limitations and weaknesses of
the Parallella board that were discovered over the course of
this research.

7.1 Complex Arithmetic

When running the benchmark in Section 6.1 instead of
multiplying we attempted to divide the two floating num-
bers. The performance difference in this case was huge,
with the ARM 667MHz core 16.74x faster than the Paral-
lella stack just using the Epiphany co-processor and 66.17 x
faster than a single 16-core Epiphany chip. This is due to the
eCores having no hardware support for higher-complexity
arithmetic. This translates to doing long division and re-
quiring more CPU cycles per instruction. The slow division
has far reaching consequences as many useful functions rely
upon it such as modula and rand(). To try mitigate the
performance drop if a large amount of division or complex
arithmetic needs to be done it is better to pass the work to
the ARM processor which can do the calculations and pass
the data back to the co-processor.

7.2 Hardware Optimisations

All optimisations for Epiphany programs must be done by
the compiler instead of clever hardware. The simple RISC
cores provided on the Epiphany chip do not attempt to pre-
dict or change the ordering of instructions being executed?.

“http://www.bdti.com/InsideDSP/2012/09/05/Adapteva



Table 1: Time and speedup per machine for 100,000,000 iterations of floating point arithmetic

Processor type Time(s) | Speedup with respect to one ARM core
One ARM core 16.3 1.0
One Epiphany chip 1.38 11.8
Four Epiphany chips 0.54 30.0
Four Parallella boards using ARM and Epiphany 0.34 48.1
Intel i5 3570 0.30 54.2

Table 2: Average point to point bandwidth using MPI

Message size(bytes) | Average bandwidth (MB/sec) | Average bandwidth with two processors
per Ethernet adapter (MB/sec)
100000 44.48 37.52
200000 47.97 30.04
300000 45.71 27.06
400000 46.22 41.22
500000 47.2 45.81
600000 48.4 45.36
700000 49.76 46.93
800000 49.31 47.67
900000 49.31 47.49
1000000 51.15 48.25

8. CONCLUSION

Our objectives for this project were to build a cluster using
four Parallella boards and to benchmark the cluster against
similar low-cost systems.

In this paper, we discussed how a cluster of four Parallella
boards was constructed and powered using a single power
supply. The Parallella stack is actively cooled by two fans
and connected to a 1Gb/s switch to facilitate communication
between boards.

Software for programming and running distributed pro-
grams on the cluster was set up and configured and an NFS
server for storing files and a DHCP server with nat to pro-
vide Internet and IP addresses were set up and added to
the network. This means that the only requirement for in-
teraction with the Parallella stack is a working SSH-client,
making the system easily accessible with minimum effort
and easy to set up on multiple machines. This satisfies the
first two main objectives.

For benchmarking, some simple programs were created
and executed sequentially and in parallel on the Parallella
stack. The Parallella stack performed slightly worse when
compared with an Intel i5 3.40GHz processor, but used at
least three times less power'®. In terms of cost, both the four
Parallella boards and the Intel i5-3570 cost approximately
$400*!, but to make use of both devices more components
are needed adding to the total cost. Depending what hard-
ware is bought to use with these devices the costs could be
similar.

We found that the lack of hardware support for complex
arithmetic such as square roots and division can be costly to
performance if the instruction is frequent enough and steps
are not taken to delegate complex arithmetic to the local
ARM core, which does have the hardware support to process

POhttp: //www.tomshardware.com/reviews/
core-i5-3570-low-power,3204-13.html
"http://www.amazon.com/Intel-i5-3570-Quad-Core-
Processor-Cache/dp/B0083U94D8/

quickly. It is was also discovered and noted that the RISC
cores on the Epiphany do not do any runtime optimisations
and the only automated optimisations are provided by the
compiler.

As this research only set out to create a basic cluster,
there is plenty of scope for further development and optimi-
sation; for example more benchmarks and programs should
be executed to further test the Parallella stack. Addition-
ally, research into using the Brown Deer COPRTHR (co-
processing threads) library'? to help create homogeneous
Epiphany MPI programs is needed. The Parallella’s Zynq
processor has a field-programmable gate array that may be
used to re-program the boards to better suit different pur-
poses.

To facilitate use of the cluster, a web front end could be
created to receive and run programs or to monitor the clus-
ter’s current work load. This could be extended to process
requests and schedule work so that the cluster can be used
simultaneously by multiple people.

Other extensions could be creating a library for languages
other than C, C++ and OpenCL to be able to use the Par-
allella stack.

Acknowledgments

I would like to acknowledge the financial and technical sup-
port of Telkom SA, Tellabs, Easttel, Bright Ideas 39, THRIP
and NRF SA (UID 75107) through the Telkom Centre of Ex-
cellence in the Department of Computer Science at Rhodes
University.

References

[1] Open MPI: Open Source High Performance Computing.
Online. Accessed: 2015.11.17. Available from: http:
//www.open-mpi.org/.

2http: / /www.browndeertechnology.com/coprthr.htm



2]

10

[11]

[12]

[13]

[14]

[17]

The Parallella Board. Online. Accessed: 2015-03-01.
Available from: https://www.parallella.org/.

Top 500 super computers. Online. Accessed:
2015.02.25. Available from: http://www.top500.org/.

ADAPTEVA. Epiphany Datasheet. Online. Accessed:
2015.05.05.  Available from: http://adapteva.com/
docs/el16g301_datasheet.pdf.

BriDGES, P., Doss, N., Gropp, W., KARRELS, E.,
Lusk, E., AND SKJELLUM, A. User’s guide to MPICH,
a portable implementation of MPI. Argonne National
Laboratory 9700 (1995), 60439-4801.

Buyya, R. High performance cluster computing. New
Jersey: Prentice Hall (1999).

CHAPMAN, B., JosT, G., AND VAN DER Pas, R. Us-
ing OpenMP: portable shared memory parallel program-
ming, vol. 10. MIT press, 2008.

Cox, S., Cox, J., BoARDMAN, R., JOHNSTON, S.,
ScorT, M., AND O’BRIEN, N. Iridis-pi: a low-cost,
compact demonstration cluster. Cluster Computing 17,
2 (2014), 349-358.

Dacuwm, L., AND MENON, R. OpenMP: an industry
standard API for shared-memory programming. Com-
putational Science & Engineering, IEEE 5, 1 (1998),
46-55.

GABRIEL, E., FacGg, G. E., BosiLca, G., ANGSKUN,
T., DONGARRA, J. J., SQUYRES, J. M., SAHAY, V.,
KAMBADUR, P., BARRETT, B., LUMSDAINE, A., ET AL.
Open MPI: Goals, concept, and design of a next gen-
eration MPI implementation. In Recent Advances in
Parallel Virtual Machine and Message Passing Inter-
face. Springer, 2004, pp. 97-104.

GEER, D. Chip makers turn to multi-core processors.
Computer 38, 5 (2005), 11-13.

GEIsT, A. PVM: Parallel virtual machine: a users’
guide and tutorial for metworked parallel computing.
MIT press, 1994.

Grorp, W., AND Lusk, E. Installation guide for
mpich, a portable implementation of MPI. Tech. rep.,
Technical Report ANL-96/5, Argonne National Labo-
ratory, 1996.

Gropp, W., Lusk, E., Doss, N., AND SKJELLUM,
A. A high-performance, portable implementation of
the MPI message passing interface standard. Parallel
computing 22, 6 (1996), 789-828.

KRUGER, M. J. Building a Parallella board cluster,
2015. Honours thesis at Rhodes University.

OLOFSSON, A., NORDSTROM, T., AND UL-ABDIN, Z.
Kickstarting high-performance energy-efficient many-
core architectures with Epiphany. arXiv preprint
arXiv:1412.5588 (2014).

Pabua, D. A., AND WOLFE, M. J. Advanced compiler
optimizations for supercomputers. Communications of
the ACM 29, 12 (1986), 1184-1201.

(18]

(19]

[20]

(21]

(22]

PARALLELLA. Parallella Reference Manual. Online.
Accessed: 2015.05.05. Available from: http://www.
parallella.org/docs/parallella_manual.pdf.

RicHiE, D., Ross, J., PARK, S., AND SHIRES, D.
Threaded MPI programming model for the Epiphany
RISC array processor. Journal of Computational Sci-
ence (2015).

SANBONMATSU, K., AND TunNg, C.-S. High perfor-
mance computing in biology: multimillion atom simula-
tions of nanoscale systems. Journal of structural biology
157, 3 (2007), 470-480.

TEZDUYAR, T., ALIABADI, S., BEHR, M., JOHNSON,
A., KALRO, V., AND LITKE, M. Flow simulation and
high performance computing. Computational Mechan-
ics 18, 6 (1996), 397-412. test.

VARGHESE, A., EDWARDS, B., MITRA, G., AND REN-
DELL, A. P. Programming the Adapteva Epiphany 64-
core network-on-chip coprocessor. In Parallel € Dis-
tributed Processing Symposium Workshops (IPDPSW),
2014 IEEE International (2014), IEEE, pp. 984-992.



